GiggleLiu - The Numeric Monster

Solving random walk on graphs with tails

References

  1. Quantum scattering theory on graphs with tails (Martin Varbanov, Todd A. Brun, 2009)

Half chain

Let the hamiltonian of a half chain be

H1/2=12n=0nn+1+h.c.H_{1/2} = \frac{1}{2} \sum_{n=0}^\infty |n\rangle\langle {n+1}| + h.c.

The eigenvalues and eigenvectors of a full chain are cos(k)\cos(k) and k=eiknn| k\rangle = e^{ikn} |n\rangle respectively. Given an eigenvector of a full chain, the effect of applying the half chain Hamiltonian on it is

H1/2k1/2=n=012eikn(n1+n+1)=n=0(12(eik(n1)+eik(n+1))n)12eik0=cos(k)k1/212eik0 \begin{align*} H_{1/2} |k\rangle_{1/2} &= \sum_{n=0}^{\infty}\frac{1}{2}e^{ikn}(|n-1\rangle + |n+1\rangle)\\ &= \sum_{n=0}^{\infty}\left(\frac{1}{2}(e^{ik(n-1)}+e^{ik(n+1)})|n\rangle\right) - \frac{1}{2}e^{-ik}|0\rangle\\ &=\cos(k) |k\rangle_{1/2} - \frac{1}{2}e^{-ik}|0\rangle \end{align*}

where k1/2=n=0nnk|k\rangle_{1/2} = \sum_{n=0}^{\infty} |n\rangle\langle n|k\rangle.

Graphs with tails

Let G=(V,E)G=(V,E) be a graph with some of its vertices VVV'\subseteq V attached to half chains (or tails) and each vertex can be attached to at most one tail. The model Hamiltonian is

H=HG+vVHv H = H_G + \sum_{v\in V'} H_v

where Hv=12n=0nvn+1v+h.c.H_v = \frac{1}{2} \sum_{n=0}^\infty |n_v\rangle\langle {n+1}_v| + h.c. is a 1D chain model and HGH_G is the Hamiltonian on a graph. In the following, unless specified explicitly, v\sum_v stands for vV\sum_{v\in V'}. Let us decompose the wave function on the graph into three parts.

ψ=ψG+vψvvav0v \begin{equation*} |\psi\rangle = |\psi\rangle_G + \sum_v |\psi\rangle_v - \sum_v a_v|0_v\rangle \end{equation*}

where ψG=vVvvψ|\psi\rangle_G = \sum_{v\in V}|v\rangle\langle v|\psi\rangle (note in our definition, v=0v|v\rangle = |0_v\rangle), ψv=n=0nvnvψ|\psi\rangle_v = \sum_{n=0}^\infty|n_v\rangle\langle n_v|\psi\rangle and av=0vψG=0vψva_v = \langle 0_v|\psi\rangle_G = \langle 0_v|\psi\rangle_v.

To solve the eigen-decomposition problem Hψ=EψH |\psi\rangle = E|\psi\rangle, we have

Hψ=HGψG+HGv(ψvav0v)+vHv(ψGvav0v)+vHvψv \begin{align*} H |\psi\rangle &= H_G |\psi\rangle_G \textcolor{lightgray}{+ H_G\sum_v(|\psi\rangle_v - a_v|0_v\rangle)}\\ &\textcolor{lightgray}{+\sum_v H_v (|\psi\rangle_G - \sum_{v'} a_{v'}|0_{v'}\rangle)} + \sum_v H_v|\psi\rangle_v \end{align*}

where gray parts are zeroed out.

Propagating states

Let us assume ψv=Ivk+Rvk|\psi\rangle_v = I_v|-k\rangle + R_v|k\rangle, we have

av=Iv+Rv.a_v = I_v+R_v.

By inserting (2) to (5), we have

Hψ=HGψG+vcos(k)ψv(Iv2eik+Rv2eik)0v H |\psi\rangle = H_G |\psi\rangle_G + \sum_v \cos(k)|\psi\rangle_v - \left(\frac{I_v}{2}e^{ik} + \frac{R_v}{2}e^{-ik}\right)|0_v\rangle

For this ansatz, the eigenvalue of HH has to be E=cos(k)E=\cos(k). By using (4) and (6)

cos(k)(ψG+vψvv(Iv+Rv)0v)=HGψG+vcos(k)ψvv(Iv2eik+Rv2eik)0v \begin{align*} &\cos(k) \left(|\psi\rangle_G \textcolor{lightgray}{+ \sum_v |\psi\rangle_v} - \sum_v (I_v + R_v)|0_v\rangle\right) \\ = &H_G |\psi\rangle_G \textcolor{lightgray}{+ \sum_v \cos(k)|\psi\rangle_v} - \sum_v\left(\frac{I_v}{2}e^{ik} + \frac{R_v}{2}e^{-ik}\right)|0_v\rangle \end{align*}

That is

HGψG=cos(k)ψG+v(cos(k)(Iv+Rv)+Iv2eik+Rv2eik)0v=cos(k)ψGv(Iv2eik+Rv2eik)0v \begin{align*} H_G|\psi\rangle_G = &\cos(k) |\psi\rangle_G+ \sum_{v}\left(-\cos(k)(I_v + R_v) +\frac{I_v}{2}e^{ik} + \frac{R_v}{2}e^{-ik}\right)|0_v\rangle\\ = &\cos(k) |\psi\rangle_G- \sum_{v}\left(\frac{I_v}{2}e^{-ik} + \frac{R_v}{2}e^{ik}\right)|0_v\rangle \end{align*}

Let us assume the scattering is from vertex ww, i.e. Iw=1I_w = 1 and Ivw=0I_{v\neq w} = 0. We have

HGψG=cos(k)ψG12eik0wvRv2eik0v \begin{align*} H_G|\psi\rangle_G = &\cos(k) |\psi\rangle_G-\frac{1}{2}e^{-ik}|0_w\rangle - \sum_{v}\frac{R_v}{2}e^{ik}|0_v\rangle \end{align*}

Key point: Equation (11) is a quadratic linear equation

Let z=eikz = e^{ik}, we have

2HGzψG=(1+z2)ψG0wvRvz20v(12HGz+Qz2)ψG=(1z2)0w \begin{align*} &2H_G z|\psi\rangle_G = (1+z^2) |\psi\rangle_G-|0_w\rangle - \sum_{v}R_vz^2|0_v\rangle\\ &(1 - 2H_G z + Q z^2)|\psi\rangle_G = (1-z^2)|0_w\rangle \end{align*}

where

Q=1v0v0v Q = 1 - \sum_v| 0_v\rangle\langle 0_v |

since

av=0vψG={Rv,vw1+Rw,v=w a_v = \langle 0_v|\psi\rangle_G = \begin{cases} R_v &, v \neq w\\ 1+R_w &, v = w \end{cases}

Except the 2-2 before HGH_G due to the difference in convension, (11) is the same as Eq. 12 in Ref. 1.

Bound states

There are two types of bound states. The first type with ψv=0|\psi\rangle_v = 0 is trivial. In the following, we discuss the second type: k=iκk = i\kappa is pure imaginary. Let us assume

ψv=avκ|\psi\rangle_v = a_v|\kappa\rangle

with κ=eκnvnv|\kappa\rangle = e^{-\kappa n_v} |n_v\rangle. Following the same derivation from (7) to (11), we have

Hψ=HGψG+vcosh(κ)ψvav2eκ0v H |\psi\rangle = H_G |\psi\rangle_G + \sum_v \cosh(\kappa)|\psi\rangle_v - \frac{a_v}{2}e^{\kappa}|0_v\rangle

For this ansatz, the eigenvalue of HH has to be E=cosh(κ)E=\cosh(\kappa). By using (4) and (14)

cosh(κ)(ψG+vψvvav0v)=HGψG+vcosh(κ)ψvvav2eκ0v,HGψG=cosh(κ)ψGvav2eκ0v \begin{align*} &\cosh(\kappa) \left(|\psi\rangle_G \textcolor{lightgray}{+ \sum_v |\psi\rangle_v} - \sum_v a_v|0_v\rangle\right) \\ = &H_G |\psi\rangle_G \textcolor{lightgray}{+ \sum_v \cosh(\kappa)|\psi\rangle_v} - \sum_v\frac{a_v}{2}e^{\kappa}|0_v\rangle,\\ &H_G|\psi\rangle_G = \cosh(\kappa) |\psi\rangle_G - \sum_{v}\frac{a_v}{2}e^{-\kappa}|0_v\rangle\\ \end{align*}

Let zb=eκz_b = e^{-\kappa}, we have a new quadratic linear equation for the bounded states

(12HGzb+Qzb2)ψG=0 (1-2H_Gz_b+Qz_b^2)|\psi\rangle_G = 0
CC BY-SA 4.0 GiggleLiu. Last modified: April 04, 2024. Website built with Franklin.jl and the Julia programming language.