=f(x), we define its Jacobian as Jij=∂xj∂yi. Its Hessian is
Hijk=xixj∂yk (1). a+=b
JH=(1011)=0 The inverse is a−=b, its Jacobian is the inverse of the matrix above
J(f−1)=J−1=(10−11) In the following, we omit the Jacobians and Hessians of inverse functions.
(2). a+=b∗c
J=⎝⎛100c10b01⎠⎞Hbca=Hcba=1,else 0 (3). a+=b/c
J=⎝⎛1001/c10−b/c201⎠⎞Hcca=2b/c3,Hbca=Hcba=−1/c2,else 0 (4). a+=bc
J=⎝⎛100cbc−110bclogb01⎠⎞Hbca=Hcba=bc−1+cbc−1logb,Hbba=(c−1)cbc−2,Hcca=bclog2b,else 0 (5). a+=eb
J=(10eb1)Hbba=eb,else 0 (6). a+=logb
J=(101/b1)Hbba=−1/b2,else 0 (7). a+=sinb
J=(10cosb1)Hbba=−sinb,else 0 (8). a+=cosb
J=(10−sinb1)Hbba=−cosb,else 0 (9). a+=∣b∣
J=(10sign(b)1)H=0 (10). a=−a
J=(−1)H=0 (11). SWAP(a,b)=(b,a)
J=(0110)H=0 (12).
ROT(a,b,θ)=(cosθsinθ−sinθcosθ)(ab) J=⎝⎛cosθsinθ0−sinθcosθ0−bcosθ−asinθacosθ−bsinθ1⎠⎞Haθa=Hθ,ba=−sinθ,Hbθa=Hθ,ba=−cosθ,Hθθa=−acosθ+bsinθ,Haθb=Hθab=cosθ,Hbθb=Hθbb=−sinθ,Hθθb=−bcosθ−asinθ,else 0